search for




 

미래 불확실성을 내포하는 인구 예측 방법 연구
A study on methods for population prediction involving future uncertainty
Korean J Appl Stat 2024;37(6):801-815
Published online December 31, 2024
© 2024 The Korean Statistical Society.

오진호1,a
Jinho Oh1,a

a국립한밭대학교 수리과학과

aDepartment of Mathematical Sciences, Hanbat National University
1Department of Mathematical Sciences, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon 34158, Korea. E-mail: jhoh75@hanbat.ac.kr
Received January 29, 2024; Revised April 19, 2024; Accepted April 19, 2024.
Abstract
미래 불확실성은 미래에 나타날 결과나 현상에 대해 정확히 예측할 수 없음을 의미한다. 이런 미래 불확실성에 따른 결정론적 인구추계는 한계점이 분명하여 여러 선진 인구연구소나 국제기구에서는 확률론적 인구추계의 중요성을 거듭 강조해오고 있다. 또한 기후, 공정, 강수량, 기상 분야에서 확률적 예측을 제시하고 있다. 하지만 우리나라 통계청과 각종 기관에서는 시나리오 기반 결정론적 인구추계에 머물고 있고, 확률론적인 구예측의 필요성만 제기하고 있는 실정이다. 이에 본 논문은 미래 불확실성이 존재할 때 결정적 인구추계의 한계점과 문제점을 살펴보고, 미래 인구를 확률적 인구예측으로 살펴보아야하는 점을 지적하고 이에 대한 결과를 제시한다. 분석결과 확률적 신뢰구간(5th 분위수, 95th분위수) 관점에서 2025년은 5,106∼5,120만 명, 2030년 5,053∼5,082만 명, 2040년 4,829∼4,885만 명, 2050년 4,425∼4,505만 명, 그리고 예측 마지막 시점인 2062년은 4천만 명 아래 수준인 3,733∼3,830만 명으로 예상되며, 33개년 동안 빠른 인구 감소는 지속적인 출산율 하락이 가장 큰 요인으로 나타났다.
Future uncertainty means that future results or phenomena cannot be accurately predicted. Since deterministic population projection based on such future uncertainty has clear limitations, so many advanced population research institutes and international organizations have emphasized the importance of probabilistic population prediction. It also presents probabilistic predictions in the research areas of climate, process, precipitation, and weather. However, the KOSTAT and various organizations in korea are only in scenario-based deterministic population projection, and only the need for probabilistic population prediction is raised. Therefore, this paper points out that when future uncertainties exist, the limitations and problems of decisive population projection should be examined, and the future population should be examined with probabilistic population prediction, and the results are presented. As a result of the analysis, in terms of the probabilistic confidence interval (5th quartile, 95th quartile), 5,106 to 51.2 million people in 2025, 5,053 to 5,082 million in 2030, 4,829 to 4,8 million in 2040, 4,425 to 45,5 million in 2050, and the last forecast, in 2062, the number below 40 million, is expected to be 37.33 to 33.3 million, and the rapid population deceleration over 33 years was the biggest factor rapidly decline in the fertility rate.
주요어 : 불확실성, 결정론적 인구추계, 확률론적 인구예측, 분위수, 확률적 신뢰구간
Keywords : uncertainty, deterministic population projection, probabilistic population prediction, quartile, probabilistic confidence interval
References
  1. Alho JM and Spencer BD (1985). Uncertain population forecasting, Journal of the American Statistical Association, 80, 306-314.
    Pubmed CrossRef
  2. Alho JM (1997). Scenario, uncertainty and conditional forecasts of the world population, Journal of Royal Statistical Society, 160, 71-85.
    Pubmed CrossRef
  3. Alho JM (2005). Remarks on the Use of Probabilities in Demography and Forecasting. In Bengtsson T and Keilman N (Eds), Old and New Perspectives on Mortality Forecasting (pp. 113-122), Springer Open, Switzerland.
    CrossRef
  4. Alder M and De Beer J (2004). Assumptions on fertility in stochastic population forecasts, International Statistical Review, 72, 65-79.
    CrossRef
  5. Alkema L, Gerpand P, Raftery A, and Wilmoth J (2015). The united nations probabilistic population projections: An introduction to demographic forecasting with uncertainty, Foresight(Colch), 37, 19-24.
  6. Box GEP and Cox DR (1964). An analysis of transformations, Journal of the Royal Statistical Society, Series B, 26, 211-252.
    CrossRef
  7. Cahandola T, Coleman DA, and Horn RW (1999). Recent European fertility patterns: Fitting curves to ’distorted distributions, Population Studies, 53, 317-329.
    Pubmed CrossRef
  8. Dator JA (2002). Advancing Futures: Futures Studies in Higher Education, Praeger Press, London.
  9. Dator JA (2009). Alternative futures at the Manoa school, Journal of Futures Studies, 14, 1-18.
  10. De Beer J (2000). Dealing with uncertainty in population forecasting, Statistics Netherlands,
  11. Dunstan D and Ball C (2016). Demographic projections: User and producer experiences of adoption a stochastic approach, Journal of Official Statistics, 32, 947-962.
    CrossRef
  12. Enders CK (2010). Applied Missing Data Analysis, The Guilford Press, New York, NY.
  13. Gerland P, Raftery A, Sevcikova H et al. (2014), World population stabilization unlikely this century, Science, 346, 234-237.
    Pubmed KoreaMed CrossRef
  14. Hadwiger H (1940). “Eine analytische reprodutions-funktion fur biologische gesamtheiten”, Skandinavisk Aktuarietidskrift, 23, 101-113.
    CrossRef
  15. Hoem JM, D. Madsen, J.L.Nielsen, E. Ohlsen, H.O Hansen, and B. Rennermalm. (1981). Experiments in modelling recent danish fertility curves, Demography, 18, 231-244.
    Pubmed CrossRef
  16. Horiuchi S and Wilmoth JR (1995). Aging of Mortality Decline, Rockefeller University, New York.
  17. Hyndman RJ and Ullah S (2007). Robust forecasting of mortality and fertility rates: A functional data approach, Computational Statistics & Data Analysis, 51, 4942-4956.
    CrossRef
  18. Hyndman RJ and Booth H (2008). Stochastic population forecasts using functional data models for mortality, fertility and migration, International Journal of forecasting, 24, 323-342.
    CrossRef
  19. Hyndman R., J., Booth H., and Yasmeen F.,(2013). Coherent mortality forecasting: The product-ration method with functional time series models, Demography, 50, 261-283.
    Pubmed CrossRef
  20. Kaneko R (2003). Elaboration of the Coale-McNeil nuptiality model as the generalized log gamma distribution: A new identity and empirical enhancements, Demographic Research, 9, 223-262.
    CrossRef
  21. Keilman N (2002). Why population forecasts should be probablistic - illustrated by the case of norway, Demographic Research, 6, 409-454.
    CrossRef
  22. Keilman N (2005). Erroneous Population Forecasts. In Bengtsson T and Keilman N (Eds), Old and New Perspectives on Mortality Forecasting (pp. 95-111), Springer Open, Switzerland.
    CrossRef
  23. Keyfitz N (1981). The limits of population forecasting, Population and Development Review, 7, 579-593.
    CrossRef
  24. Kim SY and Oh JH (2017). A study comparison of mortality projection using parametric and non-parametric model, The Korean Jonrnal of Applied Statistics, 30, 701-717.
    CrossRef
  25. KOSTAT (2016). Population projection 2015~2065,
  26. KOSTAT (2019). The Special population projection 2017~2067,
  27. KOSTAT (2021). Population projection 2020~2070,
  28. KOSTAT (2023). Population projection 2022~2072,
  29. Lee RD and Carter LR (1992). Modeling and forecasting U.S. mortality, Journal of the American Statistical Association, 87, 659-671.
    CrossRef
  30. Lee RD and Tuljapurkar S (1994). Stochastic population forecasts for the united states: Beyond high, medium, and low, Journal of the American Statistical Association, 89, 1175-1189.
    CrossRef
  31. Lee RD (1998). Probabilistic approaches to population forecasting, Population and Development Review, 24, 156-190.
    CrossRef
  32. Lee RD (2004). Quantifying our ignorance: Stochastic forecasts of population and public budgets, Population and Development Review, 30, 153-175.
  33. Lesile PH (1945). The use of matrices in certain population mathematics, Biometrika, 33, 183-212.
    Pubmed CrossRef
  34. Lesile PH (1948). Some further notes on the use of matrices in population mathematics, Biometrika, 35, 213-245.
    CrossRef
  35. Li N and Gerland P (2011). Modifying the Lee-Carter Method to Project Mortality Changes up to 2100. In he Population Association of America 2011 Annual meeting-Washington, DC, Session 125, formal Demography I: Mathematical Models and Methods, Washington, DC.
  36. Li N, Lee R, and Gerland P (2013). Extending the Lee-Cater method to model the rotation of age patterns of mortality decline for long-term projections, Demography, 50, 2037-2051.
    Pubmed KoreaMed CrossRef
  37. Lutz W and Goldstein JR (2004). Introduction: How to deal with uncertainty in population forecasting ?, International Statistical Review, 72, 1-4.
    CrossRef
  38. Lutz, W., W. Butz, and S. KC. (2014). World Population and Human Capital in the 21st Century, Oxford University Press, Oxford, United Kingdom.
    CrossRef
  39. MDIPR (2006). Stochastic forecast of the population of Poland, 2005-2050, MPIDR WORKING PAPER WP 2006-026 AUGUST 2006 (REVISED NOVEMBER 2007).
  40. MDIPR (2007). Aging of a giant: A stochastic population forecast for China, 2001-2050, MPIDR WORKING PAPER WP 2007-032.
  41. Moguerza JM, Olivares A, Kostaki A, and Psarakis S (2010). Comparing Smoothing Techniques on Fertil- ity data. In 9th Mexican International Conference on Artificial Intelligence, MICAI 2010, Pachuca, Mexico, November 8-13, 2010, Special Sessions, Pachuca, Mexico.
    CrossRef


December 2024, 37 (6)