search for


강원도 관광산업에 대한 비모수적 구성비 자료 분석
Nonparametric compositional data analysis for tourism industry in Gangwon area
Korean J Appl Stat 2023;36(5):473-488
Published online October 31, 2023
© 2023 The Korean Statistical Society.

박성은a, 전정민b, 이영경1,a
Seongeun Parka, Jeong Min Jeonb, Young Kyung Lee1,a

a강원대학교 통계학과; b서울대학교 통계학과

aDepartment of Statistics, Kangwon National University;
bDepartment of Statistics, Seoul National University
1Department of Statistics, Kangwon National University, 1 Gangwondaehakgil, Chuncheon-si, Gangwon-do 24341, Korea. E-mail:
This Research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea govern- ment (MSIP) (No. NRF-2021R1A2C1003920).
Received March 12, 2023; Revised April 19, 2023; Accepted May 4, 2023.
국내 대표 관광지인 강원도는 관광수요가 일부 지역에만 편중되어 있어 지역별로 다른 관광추이를 보인다. 따라서 각 지자체의 관광 활성화 방안 수립과 지역간 균형발전을 위해 각 지역의 관광 특성을 파악하고, 연도별 관광패턴을 비교하는 것이 중요하다. 본 논문에서는 최근 4년간의 강원도 관광 자료를 이용하여 지역을 군집화하고, 군집별 관광패턴을 Jeon 등 (2021)이 제안한 비유클리디안 가법모형으로 분석하였다. 이때, 연령대에 따른 방문자 수 비율과 방문지 유형에 따른 내비게이션 검색 수 비율을 공변량으로 하고, 업종별로 구분된 관광지출액 비율을 반응 변수로 하였다. 모형의 추정을 위해 평활역접합 방법과 성분별 띠폭 선택법을 이용하였다. 그리고 삼각 도표를 통해 추정된 모형을 시각화하고, 군집별로 적합 오차에 대한 예측 오차 비율을 비교하여 연도별 관광패턴 변화를 확인하였다.
Gangwon-do is one of Korea’s most popular tourist destinations, with varying tourism demands and trends across its subregions. It is crucial to identify the characteristics of tourism in each area and compare the tourism patterns over time to devise policies that revitalize tourism in each local government and promote balanced development across regions. In this paper, we classify the regions in Gangwon-do based on tourism data from the last four years and analyze the tourism pattern of each region using the non-Euclidean additive model proposed by Jeon et al. (2021). The model incorporates the proportions of visitors by age groups and the proportions of navigation searches by destination types as two covariates, and the proportions of tourism expenditure types as a response variable. We estimate the model using the smooth-backfitting method and coordinate-wise bandwidth selection. The results are visualized in ternary plots, and changes in tourism patterns over time are analyzed by comparing the ratios of prediction errors to fitting errors.
주요어 : 구성비 자료, 성분별 띠폭 선택법, 비유클리디안 가법모형, 평활역적합, 심플렉스
Keywords : compositional data, coordinate-wise bandwidth selection, non-Euclidean additive model, smooth backfitting, simplex
  1. Badr HS, Du H, Marshall M, Dong E, Squire MM, and Gardner LM (2020). Association between mobility patterns and COVID-19 transmission in the USA: A mathematical modeling study, The Lancet Infectious Diseases, 20, 1247-1254.
    Pubmed CrossRef
  2. Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, and Barceló-Vidal C (2003). Isometric logratio transformations for compositional data analysis, Mathematical Geology, 35, 279-300.
  3. Jeon JM and Park BU (2020). Additive regression with Hilbertian responses, Annals of Statistics, 48, 2671-2697.
  4. Jeon JM, Park BU, and Van Keilegom I (2021). Additive regression for non-Euclidean responses and predictors, Annals of Statistics, 49, 2611-2641.
  5. Mammen E, Linton OB, and Nielsen JP (1999). The existence and asymptotic properties of a backfitting projection algorithm under weak conditions, Annals of Statistics, 27, 1443-1490.
  6. Pawlowsky-Glahn V and Buccianti A (2011). Compositional Data Analysis : Theory and Applications, John Wiley & Sons, Hoboken, NJ.
  7. UNCTAD (2021). Global economy could lose over 4 trillion due to COVID-19 impact on tourism. Retrieved Jun. 30, 2021,

February 2024, 37 (1)